Solution to Assignment 2

Supplementary Problems

Note the notations. These problems are valid in all dimensions. Hence we do not use (x, y) to denote a generic point as we do in \mathbb{R}^2 . Instead, here **x** or **p** are used to denote a generic point in \mathbb{R}^n .

- 1. Let S be a non-empty set in \mathbb{R}^n . Define its characteristic function χ_S to be $\chi_S(\mathbf{x}) = 1$ for $\mathbf{x} \in S$ and $\chi_S(\mathbf{x}) = 0$ otherwise. Prove the following identities:
	- (a) $\chi_{A\cup B} \leq \chi_A + \chi_B$.
	- (b) $\chi_{A\cup B} = \chi_A + \chi_B$ if and only if $A \cap B = \phi$, that is, A and B are disjoint.
	- (c) $\chi_{A \cap B} = \chi_A \chi_B$.

Solution. (a) For $\mathbf{x} \in A \cup B$, x must belong either to A or B. Hence $\chi_{A \cup B}(\mathbf{x}) = 1 \leq$ $\chi_A(\mathbf{x}) + \chi_B(\mathbf{x})$. On the other hand, when x does not belong to $A \cup B$, $\chi_{A \cup B}(\mathbf{x}) = 0$ and the inequality clearly holds.

- (b) and (c) are left to you.
- 2. Let f be integrable in a domain D which satisfies $A \le f \le B$ for two numbers A and B everywhere. Show that

$$
A|D| \le \int_D f \le B|D| \;,
$$

where $|D|$ is the "area" of D.

Solution. By assumption, $B - f(x) \ge 0$ for all $x \in D$. Hence

$$
0 \leq \int_D (B - f)
$$

= $\int_D B - \int_D f$ (linearity)
= $B|D| - \int_D f$,

and the second inequality follows. The first one can be proved by using $f(\mathbf{x}) - A \geq 0$. (The area is better understood as the n-dimensional volume.)